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Our interpretation of these results is that reduction of 7-
methylguanosine disrupts the Cn-Gj2-Hi7G46 base triple and 
gives rise to a slightly less ordered tRNA structure. The con­
comitant, reversible change in the rate of tRNA aminoacyla-
tion and photoinduced cross-linking verifies the importance 
of 7-methylguanosine in maintenance of the tertiary structure 
of tRNA in solution. 
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Temperature Dependent Electron Spin Resonance 
Spectra of Cyclohexadienyl and Silyl-Substituted 
Cyclohexadienyl Radicals. On the Conformation 
of the Radicals1 

Sir: 

Although ESR spectra of a few relatively long-lived cyclo­
hexadienyl radicals in solution have recently been reported 
from this2 and other3 laboratories, most cyclohexadienyl 
radicals have been too reactive to give good ESR spectra in 
solution. Therefore, no study on the temperature dependence 
of the ESR spectra has been made.4 

The equilibrium structure of the cyclohexadienyl radical is 
regarded as planar, but at the same time, the energy minimum 
is rather shallow so that the radical would be expected to vi­
brate between bent structures such as I.4« The INDO calcu-

SiH3 

lations of the parent cyclohexadienyl radical predicted that the 
magnitude of the hfcc of the methylene protons should decrease 
with increasing temperature due to the increasing out-of-plane 
deformation from the planar carbon framework.48 

Our recent studies on the ESR spectra of several 6,6-disi-
lylcyclohexadienyl radicals showed that the silyl group in the 
radicals had a large 29Si isotopic hfcc due to the enhanced <r-7r 
conjugation that should be reflected in the preferred confor­
mation of the radicals at low temperature.2a Consequently, it 
seemed very interesting and also very important to examine 
the temperature dependence of the ESR spectra of cyclohex­
adienyl radicals. 

The cyclohexadienyl and silyl-substituted cyclohexadienyl 
radicals were generated by hydrogen abstraction from the 
corresponding 1,4-cyclohexadienes (eq 1). 

H R 

+ t-BuO 

H 
2 1 H 

-100 °c 3 /7^X/ 

* R—(i • Y* + t-Buon on 
4^'s R 

la, R = H; lb, R = Me3Si 
Photolysis of a mixture of 1,4-cyclohexadiene, di-tert- butyl 

peroxide, and cyclopropane (ca. 1:1:1) in the cavity of an ESR 
spectrometer5 gave a well-resolved spectrum of the cyclohex­
adienyl radical ( la) whose hfcc values agreed well with those 
of the literature:415 hfcc(gauss) ( -100 0 C) 2.65 (H2,4), 9.13 
(H,,5), 13.56(H3), 48.1 (H6). The peak-to-peak line width was 
less than 50 mG. Similarly, 2,6-bis(trimethylsilyl)cyclohex-
adienyl radical ( lb) was generated: hfcc(gauss) (—100 0 C) 
2.15 (H2,4), 8.00 (H,,5), 35.9 (H6). 
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Figure 1. Temperature dependence of hfcc values of the methylene protons 
in the cyclohexadienyl (la) and 3,6-bis(trimethylsilyl)cyclohexadienyl 
(lb) radicals. 
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Figure 2. Relative energy of the out-of-plane distortion for cyclohexadienyl 
radicals. 

These radicals can generate relatively high concentrations 
to give as good a signal to noise ratio as studying the temper­
ature dependence of the ESR spectra. Figure 1 shows the 
temperature dependence of the proton hfcc at 6-position of 
both la and lb, and the value of ba6/5T for la is calculated to 
be-6.6mG/°C. 

The negative temperature coefficient observed in this study 
should originate in the out-of-plane deformation of the 
methylene carbon in the cyclohexadienyl radical (I). Thus, the 
hfcc of the axial hydrogen (H3) should increase with enhanced 
out-of-plane deformation at higher temperature while that of 
the equatorial hydrogen (He) should decrease. However, the 
average value is expected to exhibit a small net decrease by 
INDO calculations.48 Therefore, the present study shows 
clearly that the cyclohexadienyl radical is planar but vibrates 
between bent structures. 

Figure 1 contains another interesting feature that the proton 
hfcc at 6-position of lb shows small but definitely positive 
ternperature dependence (bae/bT = +2.6 mG/°C). This can 
be interpreted in terms of the preferred conformation in which 
the 6-trimethylsilyl group occupies the axial position at the bent 
structure at low temperature (II). Such a preferred confor­
mation should result from a-it conjugation between the C-Si 
bond and the TT system.6 Unrestricted CNDO/2 calculations7 

for I and II also support the conclusion on the equilibrium 
structures of cyclohexadienyl radicals.8 Thus, as Figure 2 
shows, the parent cyclohexadienyl has the energy minimum 
at B - 0°, where 6 is the angle of out-of-plane distortion from 
the planar carbon framework, while the energy minimum of 
the 6-silylcyclohexadienyl radical is at 8 = +4°.9 
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Additions and Corrections 

Idealized Polytopal Forms. Description of Real Molecules 
Referenced to Idealized Polygons or Polyhedra in Geometric 
Reaction Path Form [J. Am. Chem. Soc, 96, 1748 (1974)]. 
E. L. MUETTERTIES and L. J. GUGGENBERGER, Central 
Research Department, E. I. du Pont de Nemours and Com­
pany, Experimental Station, Wilmington, Delaware 19898. 

For the Ci13 polyhedron in Figure 10, the calculated edge 
lengths and dihedral angles should be q = 1.212r, 5 = 1.268/-, 
t = 1.321/-, u = 1.670/-, and 5's = 16.2°. 

In Table IV, the ideal angles (b's) for the C3l- model should 
be 16.2, 16.2, and 16.2°. 
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